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A numerical method for predicting three-dimensional, steady viscous flow in ducts is 
described. The method utilizes approximate governing equations which are applicable to 
flows having strong convection in one primary flow direction. The governing equations 
require a coordinate system as input to define primary and secondary flow directions, 
and an inviscid tirst approximation to static pressure gradients arising from curved 
flow geometries. The equations are parabolic and are solved by stepwise integration 
in the primary flow direction from prescribed upstream initial conditions. Specific 
details of the method are given by way of application to a special case chosen for its 
simplicity, that of laminar flow in the entrance region of straight rectangular ducts. A 
numerical method based on an alternating-direction implicit (ADI) scheme is described 
and used to compute solutions for flow in ducts having aspect ratios of 1: 1 and 2: 1; in one 
case, the effect of thermal convection caused by a transverse buoyancy force is also 
included. The computed solutions are found to be in good agreement with experimental 
velocity-profile and pressure-drop measurements. Extensions to treat more general 
geometries and to include compressibility effects and turbulent transport processes are 
possible and seem warranted by the present results. 

Three-dimensional viscous internal flows occur commonly in practical aero- 
dynamic components. For example, in flows through two-dimensional curved 
diffusers or through the blade passages of turbomachinery, the turning of the 
mainstream or primary flow generates a three-dimensional viscous flow in the 
region of the bounding walls. This flow generally has an important influence on the 
passage flow losses and, in thermal applications, on the heat transferred to the 
bounding walls. Small three-dimensional flows occur naturally in the entrance 
region of straight ducts having nonaxisymmetric cross sections, and much larger 
secondary flows can be generated in heated or cooled ducts by the presence of 
transverse buoyancy forces, which result from gravitational, centrifugal, or coriolis 
accelerations. Obviously, techniques for predicting three-dimensional viscous flows 
in ducts are of significant practical interest. Because of the interactions which occur 
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between the inviscid and viscous portions of the flow, the three-dimensional duct 
flows of interest have been extremely difficult to analyze. Most previous analyses 
have been based on rotational inviscid flow theory, and much of this effort has been 
surveyed by Hawthorne [I]. An inviscid “secondary flow approximation” derived 
by Squire and Winter [2] was applied by them to the flow in a curved rectangular 
duct, and has been applied recently to the flow in a curved pipe by Rowe [3]. 
Solutions for both of these problems have been computed recently by Stuart and 
Hetherington [4] using the full three-dimensional rotational inviscid equations of 
motion. Although these rotational inviscid analyses are useful and provide con- 
siderable insight into the character of three-dimensional duct flows, the neglect of 
viscous effects is a serious shortcoming if detailed quantitative information is 
desired. Discrepancies between the inviscid theory and experiment are usually 
attributed to viscous effects; for example, in the inviscid analysis of flow through a 
curved duct, the secondary flow produced in the duct depends on the vorticity 
present in the upstream flow. Since this vorticity normally reaches a maximum in 
the neglected boundary layer, an arbitrary assumption must be made about where 
to “cut of??’ the upstream velocity profile [l], and the resulting solutions are sensi- 
tive to the cut-off value (or slip velocity) chosen. Finally, the inviscid theory is not 
applicable to problems in which the secondary flow is produced entirely within 
the neglected boundary layers, and cannot be used to compute viscous losses or 
heat transfer. 

In an attempt to account for viscous effects, it is natural to consider using three- 
dimensional boundary layer theory in conjunction with an inviscid flow analysis. 
However, such an approach has a number of drawbacks for internal flows. First, 
the boundary layer equations are not valid in corner regions. Second, the correct 
means for matching boundary layer and inviscid solutions has not been established 
if the inviscid flow is rotational. Finally, it is not clear how such an approach could 
handle strong interaction between viscous and inviscid regions of the type present, 
for example, in the streamwise “comer vortices” of curved flow passages. An 
alternate approach is to solve the complete three-dimensional Navier-Stokes 
equations. Although such an analysis would clearly be adequate to describe the 
flow in internal flow passages, the grid resolution problems associated with prac- 
tical high Reynolds number flows, together with the three-dimensionality of the 
problem, would place excessive demands on the computer time and storage of 
presently available computers. Although this shortcoming will be mitigated by 
future generations of computers, the need for a more economical method of 
analysis remains. 

The present method of analysis is an effort to overcome the limitations of the 
foregoing approaches. The present method utilizes a set of three-dimensional vis- 
cous governing equations which are solved by stepwise integration in the direction 
of the primary flow. The entire flow field is thereby obtained by a sequence of two- 
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dimensional calculations, and this feature of the method results in a substantial 
saving of computer time and storage compared to that required for solution of the 
three-dimensional Navier-Stokes equations. Furthermore, the method adequately 
treats the corner flow, accounts automatically for interaction between viscous and 
inviscid flow regions, and is free from the problem of patching boundary layer and 
inviscid solutions. A similar approach has been taken recently by Patankar and 
Spalding [5]; their governing equations, except for the transverse buoyancy force, 
are equivalent to those to be derived here for Cartesian coordinates; however, the 
two methods employ dilferent numerical techniques and dilfer somewhat in ratio- 
nale. Another numerical method for the same problem has been proposed by 
Caretto, Curr, and Spalding [6]. A discussion of the differences between the present 
method and those of [S] and [6] is postponed to a later section. To gain experience 
with the present method, and also to develop a sound computational framework 
which is suitable for extension, the present study was carried out for laminar flow 
and a simple straight duct geometry. However, the approach taken is reasonably 
general and can be extended to accommodate flows in curved ducts, turbulent 
flows, and compressibility. 

FORMULATION OF EQUATIONS 

The governing equations on which the present method is based are derived using 
what are referred to here as “parabolic flow approximations.” The approximations 
represent an attempt to make use of the experimentally observable fact that high 
Reynolds number flows in geometries which do not undergo radical changes in the 
primary flow direction tend to be dominated by upstream conditions rather than 
by downstream conditions, and that small disturbances at a given point are not 
transmitted very far upstream of that point. These physical considerations suggest 
that a reasonable approximation to such a flow can be obtained by a stepwise 
integration in the direction of the primary flow from a given set of upstream initial 
conditions, provided a suitable set of governing equations can be found. The 
parabolic flow approximations require two input items: (1) a coordinate system 
which defines the primary and secondary flow directions, and (2) a tist approxima- 
tion to the static pressure gradients which arise from curved flow geometries. The 
coordinate system, which in general would be curvilinear, is shown schematically 
in Fig. 1. It consists of an axial coordinate which defines the primary flow direction, 
and two transverse coordinates which define the secondary flow planes. The 
transverse planes must be perpendicular to the walls, and the walls should, for 
computational convenience, lie in planes made up of the axial coordinate and one 
transverse coordinate. The approximation to the static pressure field can be 
obtained from a potential flow solution for flow through the given geometry, and 
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TRANSVERSE COORDINATES 
(SECONDARY FLOW PLANE) 

FIG. 1. Schematic of coordinate system for three-dimensional duct flow problem. 

is intended to account for the elliptic influence of passage geometry on the flow 
field. In support of this treatment, it is noted that in many applications not invol- 
ving primary-flow separation, experimental measurements show that inviscid flow 
theory yields a good prediction of the static pressure field. Finally, the assumptions 
are that: (1) viscous diffusion and thermal conduction in the axial or primary flow 
direction are negligible, and (2) that variations, in the axial and transverse 
directions, of the viscous correction computed for the pressure field can be treated 
separately. 

Specific details of the present method are presented by way of application to a 
problem with a simple geometry, that of flow in the entrance region of a straight 
rectangular duct. A uniform axial velocity with zero secondary flow and constant 
pressure is assumed at the entrance, and in one calculation, thermal convection 
caused by a transverse buoyancy force is considered. Since Cartesian coordinates 
are used for this problem, the method is not presented in the full generality con- 
templated for future applications; however, most of the essential features of the 
method are present in this simple case. The governing equations are obtained from 
the steady incompressible Navier-Stokes and energy equations written in Cartesian 
coordinates (x, y, z), with primary flow in the z direction and secondary flow in the 
x-y plane (see Fig. 2). The Navier-Stokes equations can be written as 
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FIG. 2. Coordinate system for straight duct. 

In these equations, U, v, and w are velocity components in the x, y, and z directions, 
respectively; T is temperature; v is the kinematic viscosity; OT is the thermal diRusi- 
vity; p is the (constant) density, and the static pressure has been written as the sum 
of an inviscid pressure P, and a viscous pressure correction p, to be explained 
subsequently. The last term in Eq. (2) is a thermal-convection buoyancy force made 
up of g, a gravitational or some other acceleration; 8, the coefficient of thermal 
expansion; and (T - Tref), the difference between the local and a reference 
temperature. 

To create a more amenable system of equations, it is assumed that first, stream- 
wise viscous diffusion for all three velocity components, and streamwise thermal 
conduction can be neglected by dropping the last of the bracketed terms in each of 
Eqs. (l)-(4) (i.e., all second derivatives with respect to the primary flow or z 
direction are discarded). Second, the inviscid pressure P, is assumed to be known 
from a potential flow solution and the components of its gradient are treated as 
source terms. For the straight duct problem, the potential flow with constant axial 
velocity and pressure is used, and in this special case, P is constant and its gradient 
is zero. Finally, as originally suggested by Patankar and Spalding [5], the viscous 
pressure correction p, in the primary flow equation (l), is treated separately from 
that in the secondary flow equations (2) and (3). In Eq. (l), the ap/az term is 
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redefined to be a mean viscous pressure drop which is a function of z only (i.e., 
constant in the x-y plane) and is computed as part of the solution from the require- 
ment that the integral mass flow in the axial direction be conserved. Thus, ap/az is 
replaced by dp,,,(z)/dz. No restrictions are placed on p in the secondary flow 
equations; in effect, p is required to vary in the x-y plane in such a way as to ensure 
that the continuity equation (5), is satisfied at every point in the flow field. With 
these assumptions, the governing equations for the straight duct become 

Id a2w a2w w2.!&---pm(z)-u~-~v++ - - 
P dz aY 1 ax2 + ap 1 5 (6) 
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az ax ay 1 

a2T a2T 
-+- ax2 1 ap 3 

g+g+g=o, (10) 

together with the integral constraint on mass flow through the duct, which for 
impermeable walls can be written as 

ffl2 s s L/2 

-H/2 -Ll2 
wdxdy = $, (11) 

where 1 is the mass flow rate through the duct. It can be shown that the set of 
equations (6~(11) constitute a parabolic system and can be solved by stepwise 
integration in the axial or z direction from a specified set of upstream initial 
conditions. The problem formulation is completed by specifying boundary and 
initial conditions. It is assumed that the fluid entering the duct has a uniform axial 
velocity with no secondary flow, and constant pressure and temperature. No-slip 
conditions are specified on the duct walls. Solutions are computed for two problems: 
(1) pure hydrodynamic flow development (i.e., isothermal flow), and (2) the mixed 
convection problem in which the wall temperature is uniform at each axial location, 
but increases linearly with axial distance. 

As partial justification for the parabolic flow approximations, it is noted that 
since the coordinate system is chosen so that the transverse x-y planes are perpen- 
dicular to the duct walls, the analysis takes full account of viscous diffusion normal 
to the walls, which is known to be important from considerations of boundary 
layer theory. The treatment of pressure terms is based in part on the experience 
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that potential flow analysis yields a good prediction of the pressure field in many 
cases of interest. The inviscid pressure P, accounts a priori for the elliptic influence 
of a curved geometry, in much the same way that a pressure distribution is 
“imposed” in boundary layer solutions. The separate treatment given to viscous 
pressure correction terms in the primary and secondary flow equations is necessary 
to obtain a parabolic set of equations. The assumption that pm is constant in 
transverse planes is reasonable for flow in a straight duct, except where inlet 
conditions imply a singularity, but this particular assumption for pm is not essential. 

One important restriction arises from the parabolic character of the governing 
equations: the axial or primary flow velocity component must remain positive. In 
other words, there can be no separation of the primary flow; secondary flow 
separation can occur, however, and thus the equations possess the necessary 
generality to describe the formation of streamwise vortices. Clearly, however, the 
analysis is not intended for application to geometries having abrupt changes in 
cross sectional area or to flow through sharp elbows, since the primary flow 
separates in these cases. The application to flow in a straight rectangular duct 
provides a test of all of the essential features of the method except the important 
one in which a nontrivial estimate for the inviscid static pressure field P, is required, 
as would be the case if the duct were curved; however, such extensions are reserved 
for a future study. 

THE NUMERICAL METHOD 

In this section, a finite-difference procedure for solving Eqs. (6)-(11), based on 
an alternating-direction implicit (ADI) method, is described. As mentioned earlier, 
numerical methods for essentially the same equations have been proposed in [5] 
and [6]. The method of Caretto, Curr, and Spalding [6] is implicit and involves the 
simultaneous solution of coupled nonlinear difference equations, thereby avoiding 
the need for linearizing and decoupling assumptions. The solution procedure, 
however, is a point-by-point iteration method which may be expected to have 
slow convergence properties, particularly for cases with small grid spacing. In the 
method of Patankar and Spalding [5], the equations are linearized and decoupled, 
and in the computation of secondary flow, corrections for predicted secondary 
flow velocities and pressure are calculated simultaneously by iteratively solving a 
single Poisson-like equation for the pressure correction. The simultaneous solution 
of velocity and pressure corrections was made possible by neglecting off-diagonal 
velocity terms in the difference equations for velocity corrections. In the method 
proposed here, these terms are retained as it appears they are negligible only for 
sufficiently small axial step size, and the assumption is instead made that the 
velocity corrections are irrotational. Although the present method thereby requires 
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the solution of two Poisson equations, one for a potential for the velocity correction 
and one for the pressure field, it is believed that greater accuracy will result for a 
given choice of grid spacing and axial step size. 

Background for the Solution Procedure 

To implement the procedure, the flow region is discretized by grid points having 
equal spacings Ax and dy, in the x and y directions, respectively, and an arbitrary 
axial step size AZ. The subscripts i and j, and the superscript n, are grid point 
indices associated with x, y, and z, respectively. Thus, ~$2~ denotes &cb , y, , zn), 
where 4 is a dummy symbol representing any one of the dependent variables. The 
subscripts are frequently omitted, so that @ is equivalent to & . For convenience, 
the following shorthand difference-operator notation is used for derivative 
difference formulas: 

(13) 

with corresponding definitions for S,C#~,~ and Sy2#, j . It is assumed that the solution 
is known at the n level, zn, and that values for un+l, u”+l, wn+l, pn+l, and Tn+l are 
to be computed. In general terms, the procedure is as follows. 

(1) wn+l is computed from the axial momentum equation, Eq. (6), with 
~2;” determined implicitly to ensure that the axial mass flow relation (1 I), is 
satisfied. 

(2) First approximations to un+l and u %+l are computed from the transverse 
momentum equations (7) and (8). Small corrections are computed from the require- 
ment that u”+l and u”+l satisfy continuity, Eq. (IO), in a manner to be explained 
subsequently. 

(3) pn+l is computed from a Poisson equation for pressure constructed from 
the transverse momentum equations (7) and (8), which are evaluated using the 
corrected values for un+l and ~+l. 

(4) Tn+l is computed from the energy equation (9). 

To carry out the foregoing procedure, it is noted that each of Eqs. (6)-(8) can be 
written in the form 

581/14/1-z 
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where # denotes any of the dependent variables U, v, or w; L2 is a second-order 
differential operator such that 

a a 
Lz=--U~-V-gffV ax2 

[ "+$-I 

and S, is treated as a source term which includes appropriate pressure gradient 
and/or buoyancy force terms. If v is replaced by 01 in Eq. (15), then Eq. (9) also 
has the form of Eq. (14). To solve any one of the equations represented by Eq. (14), 
the coefficients w, U, and v, and source term S, in Eqs. (14) and (15) are lagged (i.e., 
evaluated from known values at the n level) and the resulting equations are differen- 
ted using a Crank-Nicolson-type replacement of spatial derivatives. Thus, Eqs. (14) 
and (15) become 

where D2 is the following linearized second-order difference operator. 

Da = --u'+& - v"S* + v&2 + l&2]. (17) 

This treatment constitutes a numerical linearization and decoupling of Eqs. (6)-(g). 
It is understood that the D2 operator in Eq. (17) can be split into separate terms 
and applied to $ evaluated at the n, (n + l), or intermediate levels as required by 
the AD1 method to be described. To solve the equations represented by Eq. (16), 
AD1 techniques which are unconditionally stable (in the usual linearized sense) are 
preferred to explicit methods which suffer from one or more stability restrictions 
and which, therefore, require an axial step size dz, limited by the grid spacing 
rather than by the rate at which physical variables are.changing with axial distance. 
The technique of Douglas and Gunn [7] was used here to generate an AD1 scheme 
from the basic Crank-Nicolson scheme of Eq. (16). As with other AD1 schemes, 
the Douglas-Gunn scheme computes the solution for an axial step in two steps, 
each of which involves treating derivatives implicitly in one of the coordinate 
directions. The difference equations for the two steps are 

wn ( +*iz 9” ) = l-Un%c + v&21( +* J; @ ) + [-IY$ + vS,2]($@) + (S,)“, 
WI 

wn (“*;; q = [-u”S, + vSJ( +* ; @) + [-26, + &y( +**; q 

+ 6%)“. WW 
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During the first step of the AD1 procedure, Eq. (18a) is applied at successive x- 
direction rows of grid points to provide systems of algebraic equations which are 
linear in the implicit intermediate quantity +* and which have a tridiagonal matrix 
structure. These tridiagonal systems can be solved by any one of several efficient 
algorithms; the method used here is a straightforward modification of Gaussian 
elimination in which the nontridiagonal matrix elements (which are zero) are 
ignored. The second step of the AD1 procedure is similar to the first except that 
Eq. (18b) is applied along successive y-direction rows of grid points to obtain 
implicit equations for fj **. As shown by Douglas and Gunn [7], the final solution, 
c$** approximates 4 n+l to the same order of accuracy as the truncation error in 
Eq. (16); consequently, #** is accepted as 4%+l, For programming purposes, 
Eq. (18b) can be simplified by subtracting Eq. (18a) from Eq. (18b). Having 
established the necessary background information, specific details of the procedure 
for advancing the solution from the n to the (n + 1) level are now discussed. 

Computation of Axial Velocity and Pressure Drop 

The first step of the present method is to compute w”+l from Eq. (6). The mean 
pressure drop term in Eq. (6) is differenced as follows. 

WWp&) = (P;+’ - ~m’Y/dz (19) 

and treated as a source term. Since pl+’ is initially unknown, the correct value of 
PY is obtained implicitly using the standard secant iteration technique [8]. The 
procedure is to assume a value for pz+l, solve the axial momentum equation (6), 
for the wlt+l field using the AD1 technique defined by Eqs. (18), compute the axial 
mass flow rate from wn+l by two-dimensional numerical integration, and repeat 
this process using the secant method to find the value of pz+’ which leads to a wn+l 
which satisfies the integral mass flow constraint, Eq. (11). Because of the linear 
character of the difference equations, the secant method converges to the limit of 
machine accuracy in three iterations. The boundary conditions for wn+l are that 
wn+l is zero at points on the wall. 

Computation of Remaining Variables 

The next step of the method is to compute values for un+l, zP+l, andp”+l which 
satisfy the transverse momentum equations (7) and (8), and the continuity equation 
(10). To this end, the following decomposition of zP+l and vn+l is performed: 

un+l = u, + 24,) vn+l = v, + v, , (20) 

where u, and v, are predictions of u %+l and v*+l computed from the secondary flow 
momentum equations, and u, and v, are O(dz) corrections to u, and v, which ensure 
that us+1 and vn+l satisfy the continuity equation. The velocity predictions and 
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corrections are defined by the procedures used to calculate them, as follows. The 
velocity predictions u9 and v, , are simply the approximations to un+l and 
vn+l which result from straightforward solution of the transverse momentum 
equations (7) and (8), using the AD1 technique defined by Eqs. (18). For example, 
if 4 in Eqs. (18) represents U, then the solution of Eqs. (18) will be u**, which is by 
definition u, . The boundary conditions are that U, and v, vanish at the walls. 
Values of pn+l are not required to compute uz, and v2, since the pressure gradient 
terms in Eqs. (16) and (17) are evaluated at the n level. The corrections, U, and v, , 
are of order LIZ and are computed from the requirement that un+l and tm+l satisfy a 
difference form of the continuity equation. Combining Eqs. (10) and (20), 

LW+l avn+l 
8X +r= ( %+Y ( ax ay + ax 

au,+& =-aw 
ay ) az * (21) 

It is assumed that the velocity corrections are irrotational, and a velocity potential 
@, is introduced such that 

U, = aqax, V, = aqay. (22) 

The solenoidal contribution to the velocity corrections is of order dz and does not 
affect the continuity equation; since the momentum equations are already satisfied 
to O(dz), this contribution is neglected. Equation (22) is combined with Eq. (21) 
and the result differenced to obtain 

(S,z + 6;) @ = - [S,(u,) + S&l,) + ‘“n+;; WY 1. (23) 

Equation (23) is a difference form of Poisson’s equation, and since all quantities on 
the right-hand side of this equation are known, it can be solved by any of the 
standard methods for Poisson’s equation. The method of successive over-relaxation 
(SOR) by points was used here. It is noted, however, that SOR was considered 
adequate in the present case only because the solutions did not require much 
computer time; a more efficient technique such as ADI, block over-relaxation, or 
a fast direct method is recommended for cases in which computer time is of greater 
concern. Boundary conditions for Eq. (23) are that the velocity component (u, or 
VJ normal to the walls is zero, and hence the normal derivatives of @ vanish. Since 
u, and v, are not known at points outside the walls, it is necessary to evaluate the 
normal derivatives of U, and v, at the walls, when required in Eq. (23), using three- 
point, one-sided, second-order accurate difference formulas. Once @ has been 
computed, u, and v, are known by definition, and un+l and vn+l are computed from 
Eq. (20). It is noted that u, , v, , and hence, un+l, v”+l will not in general satisfy the 
no-slip conditions exactly, since only one velocity component can be specified as 
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boundary conditions for Eq. (23). However, the no-slip conditions are satisfied to 
O(dz) since u, and v, are O(dz) corrections added to up and v, , which in turn 
satisfy the no-slip conditions. The small slip values for un+l and an+l could, of 
course, be reset to zero if desired; however, this was not done in the present solu- 
tions. In either case, the magnitude of the slip values provides a convenient test of 
the axial resolution of the method; if the boundary slip velocities are not negligible 
when compared with secondary flow velocities in the interior, the axial step size 
should be reduced accordingly. Once @+I and v n+l have been computed, advanced 
values for pressure pn+l, are computed from the secondary flow momentum 
equations. To accomplish this, the ditTerenced forms of Eqs. (7-8) are evaluated 
using u n+l and vn+l to obtain components of the gradient of pn+l as follows. 

n+l = (FJ,,~ = ,.I [ -wn ‘“^+;, ‘“) + D2un+l + g/?(T - Trer)], (24) 

aP 
( 1 

n+1 = (F2)<,, = p [-w” @“+;; ‘*) + DQ”+‘] 
aY 5.3 

9 (25) 

where Fl and F2 are introduced for notational convenience. To construct pn+l, a 
Poisson equation for pn+l is formed by differentiating and adding Eqs. (24) and (25) 
as follows. 

and expressing this equation in difference form as 

CL2 + h2)pn+’ = UFJ + WJ. (27) 

Equation (27) has the same form as Eq. (23) and was also solved using SOR. The 
quantities Fl and F2 can be evaluated from Eqs. (24) and (25) everywhere except on 
the walls; therefore, Eq. (27) is solved in the region bounded by the rows of grid 
points immediately adjacent to the walls, and boundary conditions are applied at 
these grid points. The normal derivatives of p n+l on this computational boundary 
are known from Eqs. (24) and (25), and these are used as boundary conditions. 
With this treatment, pn+l is determined at every point in the cross-sectional plane, 
including points on the walls. The derivatives of Fl and F2 appearing in the source 
term of Eq. (27) are computed with central difference formulas, as indicated by 
Eq. (27), except at the points immediately adjacent to the walls, where these 
formulas would require unknown values of Fl and F, on the walls. At these points, 
three-point, one-sided difference formulas are used. 

The final step in the method is to compute values for Tn+l ; this is accomplished 
without difficulty by application of the AD1 technique defined by Eqs. (18) to the 
temperature equation (9). 
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Further Computational Details 

In the solution of Eq. (23) for Q, and Eq. (27) for pn+l, consideration must be 
given to an integral constraint which arises when solving the Poisson equation 
with normal derivative boundary conditions. The constraint is well known and is a 
consequence of the fact that a solution to the two-dimensional Poisson equation 
for 4 with source distribution f(x, JJ), and Neumann boundary conditions exists 
only if the following condition is satisfied: 

where A is the area enclosed by C, the boundary of the solution domain; IZ is the 
outward normal to C, and s is distance along C. Equation (28) is a consequence of 
Green’s first integral theorem [9]. Because of truncation error, the right-hand sides 
of Eqs. (23) and (27) will not, in general, satisfy this integral constraint exactly. To 
correct for this inconsistency, a small uniform correction was added to the Poisson 
source distribution, To compute the required correction, the quantity, E, defined by 

was computed by numerical integration before solving Eq. (23) or Eq. (27). The 
area-averaged amount by which the right-hand sides of Eq. (23) or Eq. (27) fail to 
satisfy the finite-difference analog of Eq. (28) is then given by (fQve = E/A. This 
constant amount (Llj),, , is therefore subtracted from the right-hand sides of 
Eqs. (23) or (27) at each grid point, to comply with the integral constraint. With 
this correction properly taken into account, solutions to Eqs. (23) and (27) exist 
and are unique to within an arbitrary constant. Failure to comply with the integral 
constraint causes a slow divergence of the SOR iteration. 

It remains to specify the treatment of initial conditions, a delicate matter for the 
present problem, since the initial conditions are singular. The singularity is a result 
of the assumption that the axial velocity is impulsively reduced from its inlet value 
to zero on the walls at the duct entrance. This mathematical treatment implies that 
the boundary layers initially have zero thickness and infinite transverse velocity 
and pressure gradients. Obviously, the present difference method with its finite 
mesh spacing cannot handle these conditions without large errors near the sin- 
gularity. However, from a computational standpoint, it is characteristic of para- 
bolic equations for the initial error to decay rather quickly as integration proceeds 
away from the singularity into a region where the mesh spacing provides sufficient 
resolution [lo]; therefore, it is believed that the solutions presented are accurate 
except near the duct entrance. This conclusion was reinforced by numerical 
experiments in which different grid spacings and axial step sizes were used. For a 
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typical solution, decreasing the mesh spacing by 50 % and varying the step size up 
to 100% had no appreciable effect on the solution except very near the duct 
entrance. Further consideration will be given to starting error in the discussion of 
results. Numerically, the treatment of the first axial step is the same as subsequent 
steps, except that the computation of the transverse pressure p, is omitted to avoid 
generating “impulsive” pressure due to the sudden appearance of secondary flow. 

COMPUTED RESULTS AND COMPARISON WITH EXPERIMENT 

In this section, solutions are presented for two ducts having aspect ratios H/L, 
of 1 : 1 and 2 : 1. These solutions are presented in nondimensional form and are 
compared with experimental velocity profile and pressure drop measurements from 
three sources [l l-131. The following definitions are applicable. D is the hydraulic 
diameter, equal to four times the cross-sectional area of the duct divided by its 
perimeter; w,, and p. are the axial velocity and static pressure at the duct entrance; 
wcL is the centerline axial velocity; and Re is the Reynolds number w,D/v. The 
solutions were computed for Reynolds numbers of 1000 and 1333, respectively, 
for the 1: 1 and 2: 1 ducts. 

The computed mean pressure drop and centerline velocity development are 
shown in Figs. 3 and 4 for the two ducts, and these are found to be in good agree- 
ment with the experiment measurements. The effect on centerline velocity develop- 
ment of neglecting the secondary flow is shown in Fig. 4. The secondary flow has 
only a mild influence on the primary flow because the transverse velocity compo- 
nents are relatively small. The magnitude of u and o varies with Reynolds number, 
but for these solutions u and u were of the order of a few tenths of one percent of 
w,, . A more detailed comparison with experiment of the axial velocity development 
is given in Figs. 5 and 6, where velocity profiles at selected axial locations are 
shown; again the computed and experimental results are in good agreement. 
Computed secondary-flow velocity profiles at one axial location are shown in 
Figs. 7 and 8 for each of the two ducts. The secondary flow is away from the walls 
and toward the center of the duct, and supplies fluid to the accelerating axial flow 
in the central core of the duct. It is perhaps worth noting that the secondary flow 
does not have a structure consisting of streamwise vortices. 

The error in these solutions caused by singular starting conditions can be 
examined to a limited extent by means of a simple analysis. Citing the analysis of 
Schlichting [14] for a two-dimensional channel, Sparrow et al. [12] have pointed 
out that near the duct entrance, w CL should vary in accordance with 

w&v, = 1 + cz112 + -*- ) (30) 

where c is a constant of proportionality. Thus, near the duct entrance, a plot of 
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FW. 3. Pressure drop coefficient, (pO - p,,,)/((1/2)p~,~), vs nondimensional axial distance, 
(z/D)/Re, for rectangular ducts. 
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FIG. 4. Centerline velocity ratio, WC&V 0, vs nondimensional axial distance, (z/D)/Re, for 
rectangular ducts. 
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FIG. 5. Nondimensional transverse distance vs axial velocity ratio W/IQ,, at selected axial 
locations for a square duct; (A) profiles at x/L = 0 or Y/H = 0; (B) profiles along a diagonal. 

wcL versus z1/2 should have a constant slope, dwcL/l(z112). In Fig. 9, both of these 
quantities are plotted in nondimensional form for the square duct solution, and an 
irregular behavior during the first twelve or so axial steps is evident, particularly 
in the computed values of slope. An extrapolated curve for slope, which has 
starting behavior of the type suggested by Eq. (30), is also shown, and this curve 
suggests that the slope should have a value of approximately 6 at the origin. By 
fitting a straight line with a slope of 6 to the computed points for velocity, as shown 
in Fig. 9, a virtual origin for the solution can be found; in this case, the virtual 
origin is located at 2 = -0.05, where 2 is the nondimensional axial variable, 
[(z/D)/Re]l12. Using this procedure, a small correction for starting error was made 
to each solution by redefining the 2 axis (using a simple translation of the origin) 
to make the actual and virtual origins coincide. 

As mentioned previously, the secondary flow is relatively small for the isothermal 
solutions in Figs. 3-8. To demonstrate the applicability of the method to a case 
with larger secondary flow, a solution was computed for a flow with mixed convec- 
tion caused by a transverse buoyancy force. In this solution, the wall temperature 
Tw , is constant at each axial location and increases linearly in the z direction. The 
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FIG. 7. Secondary flow velocity profiles for a square duct, (z/D)/Re = 0.0075. 
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FIG. 8. Secondary flow velocity profiles for a duct with 29 aspect ratio, (.z/D)/Re = 0.0158. 
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buoyancy force in Eq. (7) was computed using Tw as the reference temperature. 
The solution was computed for Prandtl number, Pr = v/a = 0.73; Rayleigh 
number, Ra = gp(dT,/dz) D4/ VOI = 103; and Re = 1000. A nondimensional 
temperature 8, is introduced such that 0 = (T - T,)/(dT,/dz) D. This solution 
reaches a fully developed condition in which the velocity field and nondimensional 
temperature do not vary with axial distance. Selected secondary-flow velocity 
proties for the fully developed region of this solution are given in Fig. 10. The 
secondary flow consists of a pair of axial or streamwise vortices driven by thermal 
convection. The fully developed axial velocity and temperature profiles in the 
y = 0 plane are shown in Fig. 11, and these are found to be in excellent agreement 
with a solution computed by Cheng and Hwang [ 151 using a relaxation procedure 
which is applicable to the fully developed flow regime. This comparison provides 
one test of the present method for a case with relatively strong interaction between 
primary and secondary flows. Although results are given here only for the fully 
developed flow region, the solutions were well behaved in the developing region. 
The product RaRe = 1.03 x lo5 is the highest considered in [15]. Although the 
present numerical method remained stable for a solution with RaRe = 1.03 x 106, 
higher values of RaRe would require special provisions for mesh refinement near 
the walls and were not attempted. 

In each of the present solutions, advantage was taken of the symmetry of the 
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FIG. 10. Fully developed secondary flow velocity proliles for the mixed convection problem 
in a square duct: Pr = 0.73, Re = 1000, Ra = 103. 
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DIRECTION OF BUOYANCY FORCE 

TEMPERATU 
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FIG. 11. Fully developed nondimensional axial velocity w/w, , and temperature 0, profiles 
for the mixed convection problem in a square duct: Pr = 0.73, Re = 1000, Ra = 103, v/H = 0. 

flow field about the y = 0 plane by a straightforward modification of boundary 
conditions. The solutions were computed using 21 x 11 and 21 x 21 grids for the 
1:l and 2:l ducts, respectively, required about 75 axial steps to reach the fully 
developed region, and required 2 to 5 minutes of UNIVAC 1108 computer time. 
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